Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-resolution reciprocal space mapping of distributed Bragg reflectors and virtual substrates : High-resolution X-ray Diffraction and Imaging

Identifieur interne : 002D30 ( Main/Repository ); précédent : 002D29; suivant : 002D31

High-resolution reciprocal space mapping of distributed Bragg reflectors and virtual substrates : High-resolution X-ray Diffraction and Imaging

Auteurs : RBID : Pascal:11-0500148

Descripteurs français

English descriptors

Abstract

Epitaxially grown silicon germanium alloy layers, prepared as virtual substrates for modulation-doped field effect transistors, and InxGa1-xAs and GaPxAs1-x graded layers on GaAs substrates prepared as distributed Bragg reflectors (DBRs), have been investigated by the reciprocal space mapping (RSM) technique. These structures possess a strong concentration gradient and crystallographic lattice relaxation across the layer, which makes the data analysis challenging. Using kinematic diffraction theory for RSM analysis gives a rather simple way to evaluate the concentration, tilt and relaxation gradients, and the layer thicknesses, as well as the dependence of these values on the azimuthal direction of the diffraction plane. The density of 60° misfit dislocations for partially relaxed layers is also estimated. Characteristics of wide aperture Bragg reflectors based on these structures are calculated.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0500148

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High-resolution reciprocal space mapping of distributed Bragg reflectors and virtual substrates : High-resolution X-ray Diffraction and Imaging</title>
<author>
<name sortKey="Zhylik, A" uniqKey="Zhylik A">A. Zhylik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Theoretical Physics, Belarusian State University, 4 Fr. Skariny av.</s1>
<s2>220030 Minsk</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>220030 Minsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rinaldi, F" uniqKey="Rinaldi F">F. Rinaldi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut für Optoelektronik, University of Ulm, Albert-Einstein-Allee 45</s1>
<s2>89081 Ulm</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
<orgName type="university">Université d'Ulm</orgName>
</affiliation>
</author>
<author>
<name sortKey="Myronov, M" uniqKey="Myronov M">M. Myronov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Theoretical Physics, Belarusian State University, 4 Fr. Skariny av.</s1>
<s2>220030 Minsk</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>220030 Minsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saito, K" uniqKey="Saito K">K. Saito</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Bruker AXS K.K., 3-9 Moriya, Kanagawa</s1>
<s2>221-0022 Yokohama</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>221-0022 Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Menzel, S" uniqKey="Menzel S">S. Menzel</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut für Optoelektronik, University of Ulm, Albert-Einstein-Allee 45</s1>
<s2>89081 Ulm</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
<orgName type="university">Université d'Ulm</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dobbie, A" uniqKey="Dobbie A">A. Dobbie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, The University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leadley, D R" uniqKey="Leadley D">D. R. Leadley</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, The University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ulyanenkova, T" uniqKey="Ulyanenkova T">T. Ulyanenkova</name>
<affiliation wicri:level="3">
<inist:fA14 i1="05">
<s1>University Karlsruhe, Engesserstr. 15</s1>
<s2>76131 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feranchuk, I D" uniqKey="Feranchuk I">I. D. Feranchuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Theoretical Physics, Belarusian State University, 4 Fr. Skariny av.</s1>
<s2>220030 Minsk</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>220030 Minsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ulyanenkov, A" uniqKey="Ulyanenkov A">A. Ulyanenkov</name>
<affiliation wicri:level="3">
<inist:fA14 i1="06">
<s1>Bruker AXS GmbH, Ostliche Rheinbrückenstr. 49</s1>
<s2>76187 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0500148</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0500148 INIST</idno>
<idno type="RBID">Pascal:11-0500148</idno>
<idno type="wicri:Area/Main/Corpus">002572</idno>
<idno type="wicri:Area/Main/Repository">002D30</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical composition</term>
<term>Concentration distribution</term>
<term>Data analysis</term>
<term>Depth profiles</term>
<term>Distributed Bragg reflectors</term>
<term>Gallium Arsenides phosphides</term>
<term>Gallium Indium Arsenides Mixed</term>
<term>Ge-Si alloys</term>
<term>Kinematic theory</term>
<term>Lattice relaxation</term>
<term>Misfit dislocations</term>
<term>Reciprocal lattice</term>
<term>X-ray reflection</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réseau réciproque</term>
<term>Diffraction RX</term>
<term>Composition chimique</term>
<term>Distribution concentration</term>
<term>Relaxation réseau</term>
<term>Analyse donnée</term>
<term>Théorie cinématique</term>
<term>Profil profondeur</term>
<term>Dislocation interfaciale</term>
<term>Gallium Indium Arséniure Mixte</term>
<term>Réflecteur Bragg réparti</term>
<term>Réflexion RX</term>
<term>Alliage Ge Si</term>
<term>Gallium Phosphoarséniure</term>
<term>InxGa1-xAs</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Epitaxially grown silicon germanium alloy layers, prepared as virtual substrates for modulation-doped field effect transistors, and In
<sub>x</sub>
Ga
<sub>1-x</sub>
As and GaP
<sub>x</sub>
As
<sub>1-x</sub>
graded layers on GaAs substrates prepared as distributed Bragg reflectors (DBRs), have been investigated by the reciprocal space mapping (RSM) technique. These structures possess a strong concentration gradient and crystallographic lattice relaxation across the layer, which makes the data analysis challenging. Using kinematic diffraction theory for RSM analysis gives a rather simple way to evaluate the concentration, tilt and relaxation gradients, and the layer thicknesses, as well as the dependence of these values on the azimuthal direction of the diffraction plane. The density of 60° misfit dislocations for partially relaxed layers is also estimated. Characteristics of wide aperture Bragg reflectors based on these structures are calculated.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>208</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High-resolution reciprocal space mapping of distributed Bragg reflectors and virtual substrates : High-resolution X-ray Diffraction and Imaging</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHYLIK (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RINALDI (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MYRONOV (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAITO (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MENZEL (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DOBBIE (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LEADLEY (D. R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ULYANENKOVA (T.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>FERANCHUK (I. D.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>ULYANENKOV (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Theoretical Physics, Belarusian State University, 4 Fr. Skariny av.</s1>
<s2>220030 Minsk</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut für Optoelektronik, University of Ulm, Albert-Einstein-Allee 45</s1>
<s2>89081 Ulm</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, The University of Warwick</s1>
<s2>Coventry CV4 7AL</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Bruker AXS K.K., 3-9 Moriya, Kanagawa</s1>
<s2>221-0022 Yokohama</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University Karlsruhe, Engesserstr. 15</s1>
<s2>76131 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Bruker AXS GmbH, Ostliche Rheinbrückenstr. 49</s1>
<s2>76187 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>2582-2586</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000507874730170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>7 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0500148</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Epitaxially grown silicon germanium alloy layers, prepared as virtual substrates for modulation-doped field effect transistors, and In
<sub>x</sub>
Ga
<sub>1-x</sub>
As and GaP
<sub>x</sub>
As
<sub>1-x</sub>
graded layers on GaAs substrates prepared as distributed Bragg reflectors (DBRs), have been investigated by the reciprocal space mapping (RSM) technique. These structures possess a strong concentration gradient and crystallographic lattice relaxation across the layer, which makes the data analysis challenging. Using kinematic diffraction theory for RSM analysis gives a rather simple way to evaluate the concentration, tilt and relaxation gradients, and the layer thicknesses, as well as the dependence of these values on the azimuthal direction of the diffraction plane. The density of 60° misfit dislocations for partially relaxed layers is also estimated. Characteristics of wide aperture Bragg reflectors based on these structures are calculated.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B79F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réseau réciproque</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Reciprocal lattice</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Red recíproca</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>XRD</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Relaxation réseau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Lattice relaxation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Analyse donnée</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Data analysis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Théorie cinématique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Kinematic theory</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Teoría cinemática</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Profil profondeur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Depth profiles</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dislocation interfaciale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Misfit dislocations</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Gallium Indium Arséniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium Indium Arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Réflecteur Bragg réparti</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Distributed Bragg reflectors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Réflexion RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>X-ray reflection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Alliage Ge Si</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ge-Si alloys</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Gallium Phosphoarséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Gallium Arsenides phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fosfoarseniuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>InxGa1-xAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>346</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002D30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0500148
   |texte=   High-resolution reciprocal space mapping of distributed Bragg reflectors and virtual substrates : High-resolution X-ray Diffraction and Imaging
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024